Saturday, May 18, 2019
Ia Math
IA Task I Introduction and purpose of task The purpose of this task is to investigate the positions of points in cross circles and to discover the various relationships between said circles. quite a little C1 has focus on O and radius r. Circle C2 has revolve around P and radius OP. Let A be one of the points of intersection of C1 and C2. Circle C3 has center A and radius r (therefore circles C1 and C3 are the same size). The point P (written P prime) is the intersection of C3 with OP. This is shown in the diagram below.Analytically find OP using r=1 and OP=2, OP=3, and OP=4 First, I created a line (see the bucket along line in the higher up figure) between AP that creates the ? AOP. Because P is on the perimeter of circle C3 and A is the center of circle C3, that means that AP is equal to the radius of C3, which is 1. We also know that because line AO connects the circumference of C1 with the center of C1 (O) and the circumference of C3 with the center of C3 (A), the radii of these circles is the same, which means that they are equivalent circles.Therefore, in the ? AOP, AO=AP. When a triangle has two equivalent sides, it is an isosceles triangle. By that logic, ? O=? P. Now, I looked at the triangle that is already drawn in the above figure, ? AOP. We know that this triangle is also isosceles because OP=AP. By that logic, ? A=? O. Using the law of cosines c2=a2+b2-2abcos(C), which works for any triangle, I assigned ? to ? O and determined that cos(? )=1/(2*OP). Then, using the law of sines (insert law of sines here), sin(? )/1=sin(180-2? )/OP OP=sin(180-2? /sin(? ) OP=sin(2? )/sin(? ) OP=2cos(? ) But because cos(? )=1/2OP as earlier discovered OP=1/OP By using this equation, I derived the following answers analytically using r=1 and OP=2, OP=3, and OP=4. OP234 OP0. 50. 330. 25 way of intersecting circles and commonplace statement describing interaction that occurs when value of OP is changed As OP changes, the resulting OP value decreases exponential ly. This shows that ______________ rant BLAH BLAH BLAH BLAH Analytically find OP using OP=2 and r=2, r=3, and r-4Behavior of intersecting circles and world-wide statement describing interaction that occurs when value of OP is changed Comments on consistency of general statement 1 vs. general statement 2 Use technology to investigate other values of r and OP. Find the general statement for OP Test the validity of the most recent general statement by using antithetic values of OP and r Discussion of scope and/or limitations of the most recent general statement history of how general statement was arrived at Further comments Further investigation into relationships of intersecting circles
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.